C. U. SHAH UNIVERSITY Winter Examination-2021

Subject Name : Problem Solving-II

Subject Code : 5SC)3PRS1	Branch: M.Sc. (Mathematics)		
Semester: 3	Date: 17/12/2021	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions.

[07]

[14]

a.	Show that the set $\{1, -1, i, -i\}$ is an abelian group under usual	(02)
	multiplication.	
b.	Define Monoid. Give two examples of Monoid which are not Groups.	(02)
c.	Classify the region in which the equation $4y^2r + x^2t = 9$ is elliptic.	(02)
d.	True or False: $\mathbf{Z} \times \mathbf{Z}$ is a cyclic group.	(01)

Q-2 **Attempt all questions**

- **a.** Show that a finite group G is cyclic group of order if and only if it has no (05) proper subgroups.
- **b.** Let *G* be a finite abelian group of order *n*. When the map $x \to x^m$ be an (05) automorphism ? Justify.
- **c.** Using Runge Kutta's method find y(0.1) provided $\frac{dy}{dx} = x^2 y$ with (04)y(0) = 1. (Take h = 0.1).

OR

Q-2

- **a.** Let o(G) = pq, p and q are prime numbers with p < q. If $p \neq q 1$ then (06) show that *G* is cyclic.
- **b.** Find the number of irreducible monic quadratic polynomial in $\mathbf{Z}_{\mathbf{P}}[X]$, (05)where p is prime. (03)
- c. Find isomorphic group to U(720).

Q-3 Attempt all questions. [14] (06)

a. Find complete integral of $z^2 = pqxy$ using Charpit's method. **b.** Evaluate : (i) $\Delta^2 \left(\frac{5x+12}{x^2+5x+6}\right)$ (05)(ii) $\Delta(e^{ax} \log bx)$

c.	Show that the polynomial $x^{p^n} - x \in Z_p[x]$ can't have a root with	(03)
	multiplicity greater than 1.	

OR

Q-3

c.

Show that any group of order 20449 is abelian. Evaluate $f(8)$ using Newton's Divided difference formula from the following table:						(06) (05)	
Х	4	5	7	10	11	12	
V	10	100	204	000	1210	2020	

Y	48	100	294	900	1210	2028	
Does there	exist a gro	oup G with	$o\left(\frac{G}{Z(G)}\right)$) = 97 ? J	ustify.		(03)

SECTION – II

	SECTION - II	
Q-4	Attempt the Following questions.	[07]
	a Write β^{99} in disjoint cycle form ,where $\beta = (1 \ 2 \ 3)(1 \ 4 \ 5)$.	(02)
	b Generate a field of order 9.	(02)
	c. How many different binary operations can be defined on the set {	$\{a, 1\}$? (01)
	d Find $\Delta sinx$.	(01)
	e . True or False: $Z_3 \times Z_6 \cong Z_{18}$	(01)
Q-5	Attempt all questions	[14]
	a. Solve the following P.D.E. $(D - 2D')(D - 3D' + 2)z = e^{2x+y}$	(1 + xy) (06)
	b. Using Picard's method find $y(0.1)$, $y(0.2)$ given $y' = 1 + xy$, y	
	c. Find all automorphism of Z_n . $(n \in N)$.	(03)
0.	OR	
Q-5		
	a. Use Lagrange's Inverse Interpolation Formula to find x when $f(given f(0) = 16.35, f(5) = 14.88, f(10) = 13.59 and f(15)$	
	b. With proper justification prove or disprove : If G is a group of or	
	then G has at least one subgroup having order p , where p , q are p	primes
	numbers and $p > q$. Also ,state the result you use.	
	c. Find order of any four elements in $U(15)$.	(02)
Q-6	Attempt all questions	[14]
	a. Solve the following system of linear equations using Gauss Seid	el (06)
	method: $28x + 4y - z = 32$, $x + 3y + 10z = 24$, $2x + 17y + 10z = 24$	4z = 35.
	b. Solve the Hart Example $\partial^2 \varphi = \partial^2 \varphi = 1 \partial \varphi$ by the methods for	. (06)
	b. Solve the Heat Equation $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{1}{k} \frac{\partial \varphi}{\partial t}$ by the method of set	paration
	of variables and show that the solution is of the form	
	$\varphi(x, y, t) = e^{\pm i(nx + my) - (n^2 + m^2)kt}$ where n and m are some	a
	$\varphi(x, y, t) = e^{-it}$ where it and in are solution constants.	
	c. Let G be a non-abelian group of order p^3 where p is prime then	find (02)
	o(Z(G)).	

OR

- a. Check whether the following polynomials are irreducible over Q or not . (06) i) $x^6 + x^3 + 1$ ii) $x^3 - 4x + 2$ iii) $x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$
- **b.** Does the group of order 72 simple ? Justify and state the results you use. (04)
- c. Using Euler's Modified method find y(0.6) given y' = 1 - 2xy, y(0) = 0. Take h = 0.2 (04)

